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Abstract — This paper addresses the problem of highly
accurate phase estimation at low light levels, as required
by the Space Interferometry Mission (SIM). Most con-
ventional phase estimation algorithms exhibit significant
bias at the signal levels and requirements at which SIM
will be operating. Several algorithms are analyzed, and
methods for compensating for their bias are developed.
Another source of error in phase estimation occurs be-
cause the phase is not constant over the integration pe-
riod. Errors due to spacecraft motion, motion of com-
pensating optical elements, and modulation errors are
analyzed and simulated.
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1. INTRODUCTION

The Space Interferometry Mission {(SIM) is a space-based
long baseline optical interferometer designed to perform
precision astrometry at unprecedented accuracy. A num-
ber of subsystems enable this performance. Among these
is the starlight subsystem, which makes extremely accu-
rate measurements of the phase difference of the starlight
that enters the two arms of an interferometer. In the
ideal setting, the combined light from the two arms of
the interferometer is sent through a prism so that fringes
formed at different wavelengths are dispersed linearly in
wavenumber over a line of detector pixels. The relative
optical path difference (OPD) between the two arms is
varied by a piezo-electric actuator. Changes in intensity
are measured at each pixel in the line detector. There-
fore, the phase delay can be measured at many wave-
lengths, and the average of the all the phase delays di-
vided by their wavenumbers gives an accurate estimate
of the pathlength difference (the delay), the quantity

of interest. A number of factors contribute to corrupt-
ing this procedure. This paper focuses on the analy-
sis/development of the fundamental algorithms for white
light fringe estimation at the low light levels experienced
by the interferometer, and the effect and mitigation of
several of these factors.

In order for SIM to make accurate astrometric measure-
ments, the systematic errors in the computed delay mea-
surements must be on the order of approximately 30 pi-
cometers. Delays are computed at approximately 1 ms
time intervals, and are realized as the difference between
an’internal metrology measurement, which monitors the
pathlength of the light through the optical system, and
the white light fringe measurement. The relevant require-
ment on the instrument is that the average pathlength
delay be computing to approximately this accuracy. One
question addressed in the paper is whether the fringe
measurement made over a 1 ms time interval is the true
average phase (delay) over the period. The true delay is
a time—varying quantity, and thus does not have a con-
stant value even over the 1 ms period. In fact it can
change by as much as several nanometers due to motions
of the spacecraft and control elements. A related ques-
tion is whether the underlying algorithms used for fringe
position estimation are unbiased at these low light levels.
And if so, what means are there for correcting them?

A careful assessment is made of both of these potentially
deleterious phenomena. Various algorithms for estimat-
ing quasi-monochromatic light fringe positions, including
the standard ABCD 4-bin algorithms and least squares
algorithms using 4 and 8 bins are considered via simula-
tion and analytical comparisons. The ABCD algorithm
implemented in the simulations is essentially the four-bin
method of dispersed white-light fringe detection that has
been tested on the Palomar Testbed Interferometer [1,2],
and which will also be implemented on the Keck Interfer-
ometer. It is shown that at low light levels, all of the al-
gorithms discussed have a significant phase offset depen-
dent bias, so that they cannot be implemented as is on
SIM. Modifications to each of these algorithms to elim-



inate the bias are developed. These include both point-
wise corrections for bias, and averaging methods that
eliminate bias in time-averaged phase estimates. The
efficacy and limitations of these modifications are vali-
dated in simulation studies. In addition, an analytical
expression is derived for the pointwise estimation error
incurred by a constantly varying phase. Large power
low frequency disturbances are shown to produce a sig-
nificant error from this effect. Strategies for minimizing
these effects are discussed.

2. Monochromatic fringe estimation.

The instantaneous intensity at one wavelength is given
as

I = Iy(1 4 V cos(kz + ¢)), (1)

where I is the measured intensity, Iy is the dc intensity
term, V is the fringe visibility, k¥ is the wavenumber of
the monochromatic light, = is the dither length of the
modulating element, and ¢ is the unknown phase to be
estimated. In addition to ¢, both V and I, are also un-
known. Thus in general a minimum of three different
values of £ must be introduced to solve for these 3 un-
known terms.

There are two ways of taking the intensity measurements
in (1): (i) the phase stepping method where the phase
shift is implemented and then the intensity is measured,
and (ii) the integrating bucket method wherein measure-
ments are made continuously as the phase is shifted (3].
Using either method, for the purposes of our initial stud-
ies, the intensity measurement can be assumed to have
the form (1).

Suppose N (N > 3) steps are made so that the set of
measurements

I = Ip(1+ V cos(kz; + ¢)) (2)

is obtained. Introducing the function F = [Fy, ..., Fx],

Fi(Io, V, ¢) = Io(]. + VCOS(k.’L‘i -+ (}5)), (3)

one straightforward way of estimating ¢ is to solve the
nonlinear least squares problem

min > |Fi(lo, V, 4) — L. (4)

LV,

A method similar to this is used in [5]; however, in [5] the
additional parameters of wavenumber and dither stroke
are also solved for in the least squares solution.

The nonlinear least squares problem posed in (4) can be
circumvented by using the variables Iy, IoV cos(¢), and

IV sin(¢) as the unknown parameters [4]. The variables
1oV cos(¢p) and [y V sin(¢p) are also referred to as phasors.

The motivation for this substitution comes from the ob-
servation that (2) can be written as

I; = Ip(1 + Vi{cos(kx;) cos(o) — sin(kz;) sin(¢)]), (5)

so that the problem becomes linear in these variables.
Specifically, (2) can be formulated as the linear system

I 1 cos(kz;) —sin(kz;) Io
= : : IV cos(o)
In 1 cos(kzy) —sin{kzy) IV sin(¢)
(6)

Now let = = [I, oV cos(¢), oV sin(¢)], denote the vec-
tor of unknown variables. Then if Z is any unbiased
estimate of z, the estimate of the unknown phase ¢ is

obtained as
N z
¢ = arctan(é) .
T2

(Here we have assumed that —7/2 < ¢ < 7/2.) Most
phase estimation algorithms can be derived from these
assumptions.
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Fig. 1 Intensity as a function of scan

The nominal four-bin ABCD detection technique is one
example of this approach. It works by scanning the OPD
by exactly one full wave of the working wavelength, from
-A/2 to A/2. The intensity is measured at five equal
intervals during this scan. Here we are assuming that
the PZT is actuated by a sawtooth waveform. Figure 1
shows the instantaneous intensity at the detector from a
single wavelength during a continuous scan from -A/2 to
A/2. The values measured for the four-bin method are



the integrals of this plot at five equally-spaced intervals,
shown as z, a, b, ¢, and d on Fig 1.

The integrated flux in each bin is calculated as 4 = a— 2z,
B=b-a,C=c—band D =d - c. Introducing the
variables X = A — C and Y = B — D, the phase delay is
calculated as

- X+Y
= t
¢ = arc an<Y_X>, (8)
Another form for the calculation is
%zarctan(ﬁ:g) —%. (9)

Modifications to (8) and (9) are necessary when the

stroke length and wavelength are unequal [1]. For ex-
ample, (8) is modified as
2 X+Y
= 1
¢ arctan<7Y_X), (10)
where
_ 2sin(s/4) — sin(s/2) (11)

1 — cos(s/2)

and s is the product of the stroke length and wavenum-
ber.

Other unbiased estimators for determining the phasor
and intensity parameters include least squares and min-
imum variance estimators. The distinction between the
two is that the minimum variance estimate incorporates
the statistics of the measurement errors of I;. We note
that the least squares and minimum variance solutions
extend to an arbitrary number of dither steps which
are not required to be of equal length. There is also
a simple relationship between the solution to the lin-
ear and nonlinear least squares problems ((6)-(7) and
(4)). Let ¥ denote the diffeomorphism mapping the vari-
ables {Ig, IyV cos(¢), IV sin(4)} into {Iy,V,¢}. Then
the composite function F o ¥ is the matrix in (6). Hence,
the solutions to the two problems are the same.

3. Analysis of Methods

This section focuses on developing approximate bias and
variance estimates for the algorithms discussed above.
Bias corrections are developed, and simulations are per-
formed to assess the efficacy of the algorithms.

FEstimator Bias

The first question we address is whether these estima-
tors are biased. This question is very important from the
standpoint of the astrometric objectives of fringe estima-
tion since the quantity of interest is the average phase

over the period of an observation of a science object.
The typical length of such an observation is about 30sec,
during which time as many as 30,000 phase calculations
are made. The average error in these calculations is re-
quired to be on the order of 30 picometers. This reqmre—
ment translates to the technical question “does E(¢) =
where ¢ is given by (7), (8), or (9)?” This questlon is
taken up now.

Without loss of generality we may assume that once
an unbiased estimator has been chosen for the variables
Iy, IV cos(¢), IyV sin(¢), the phase estimate ¢ has the
general form

2 byl
(b = arctan( , 12
Z: h'2J ( )
where h;; are the gains for the linear estimator. Each

I; is a random variable that is modeled as a sum of 2
independent random variables; one with a Poisson distri-
bution corresponding to shot noise, and the other with a
Gaussian distribution corresponding to read noise.

Because the linear estimates are unbiased, it is true that

ZE(hleﬁ)’

> E(ha;l;) (13)

¢ = arctan(

but this does not imply E (qAS) = ¢. To compute F (&), let
pi(x;) denote the density function of the random variable
I;, and let Z; and agi, denote its mean and variance,
respectively. Then since the I;’s are independent,

¢) / /arCtan(Zh;jxj>p1(xl)"'pN(xN)dxl“'

(14)

Now expand the arctan function to second order about
the means Zi, ...,y to obtain

E( {Za 2arctan[§ ;j j]oz} (15)

where all of the derivatives are evaluated at the mean
values T;.

The approximation to the bias in the estimate is con-
tained in the second term on the right in (15). For exam-
ple, these considerations can be used to generate a bias
correction term to the nominal ABCD algorithm when
there is a mismatch between the wavelength and stroke
length. This correction can be computed as

(20 +A+C)2—y(1—7’)y3—47xy(2y 2(1+-y )X)
read [ov- x)2+~,2(x+Y)z] (¥-X)

+ 2( +B+ D) 27(1=1H) X3 -4y XY (2X = 2(1+1 )Y)
Tread (Y —x)24y2(x+7)2] (v-X)

(16)

b =

d.’EN.



The figure below contains histograms of Monte Carlo
simnulations of estimating a single phase using the nomi-
nal ABCD algorithm and the bias correcting algorithm.
Phase estimates are computed every millisec, and the
simulation is run for either lsec or 100sec. The simula-
tions are then repeated 1000 times to produce the his-
tograms. The wavelength of the source is 900nm, while
the length of the PZT stroke is 725nm. It is seen that
without bias correction the nominal ABCD algorithm ex-
hibits a bias error of approximately .3nm. This error is
about .014nm for the corrected algorithm.
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Fig. 2 Bias in phase error estimated due to shot noise

The ABCD algorithm does not need correction when the
wavelength and stroke length match, but when using dis-
persed fringe measurements where the light is spread out
over several spectral bins, this condition cannot be sat-
isfied. (Although see [1] for how this was handled on the
Palomar Interferometer.)

We note that after computing the partial derivatives in
(15) and writing ¢2, as the sum of read noise and shot
noise components, it can be shown that the bias due
to read noise decreases quadratically with the number
of photons, while the bias due to shot noise decreases
linearly with the number of detected photons. Thus, the
magnitude of the bias decreases with the strength of the
signal, and ultimately becomes inconsequential at high
enough light levels. Note also that the bias is in general
a function of the phase offset.

A somewhat more direct approach to developing an
unbiased estimate of the phase is to approximate the
conditional mean qgopt = E(¢|l1,...,In). Recall that
the conditional mean is the unbiased minimum variance
estimate of the phase offset ¢ given the observations
{h,....,In}. ¢ may be written as a function of the vari-

able x = [Iy, IV cos{), IHV sin(4)] as

¢(z) = arctan i—% (17)

Thus,

E(pl1,....In) = /05(11,352,3”3)2(3’11,xz,walI)dﬂvldmzdez,
(18)

where p(z|[) is the conditional density of z given I. We
now expand ¢ in a Taylor series about the conditional
mean of x given [ to obtain

arctan( ) + [pog ~ p33](?@§_%3v
2 3
fl: —fx
+ PugER

(f)opt ~ (19)

Where p;; is the covariance matrix of the minimum vari-
ance solution in (6). In this approach the bias correction
terms (the latter two terms on the right above) appear
very naturally, and are easily computed using the covari-
ance matrix obtained from the linear estimates of the
dc intensity and phasor variables, Iy, IV cos{¢), and
I,V sin(¢), respectively.

There is still another approach that may be used to
eliminate bias. This is based on the recognition that
the 30pm requirement applies to the averaged phase
estimate. Therefore it is actually not required to re-
move the bias from each phase estimate; just as long
as it is removed from the averaged estimate. An ap-
proach for doing this is to first average the phasors,
IV cos(¢), IgV sin(¢p), and then take the arctan of the
quotient [6]. The viability of this approach stems from
the following observation:

Let {¢:} C [—7/2, 7r/2] and define

N
¢ = N Z ¢i,sin(@) = N g sin{¢;), cos(¢) = ; c'os(ch1
(20)
Then
b= arctan{ :)r;((z)) } 1 cos(2¢) ;5@53 + O0(|66:1%.),

(21)
where 6¢; = ¢ — ¢;.

This result can be interpreted in the following way: If
{Xi}i=1,~ and {Y;}i=1 v are random variables with
E(X;) = xsin(¢:),

E(Y;) = kcos(p;), (22)

for some constant &, then (retaining terms through third
order in §¢;),

EXY, Xi) cos(2¢ Z‘S‘i’s (23)

(E = arcta.n( =
E Zi=l Y‘



Note that if the §¢; are random samples from a symmet-
ric distribution, then the contribution of the third order
error can also be ignored for large values of V.

This approximation allows us to use the average values
of the phasors for estimating the average phase ¢ for
the following model. Suppose the “true” phase is a step
function that takes on the discrete values ¢; on the time
interval [¢;,t;11]. Further assume that the dc intensity
values and visibilities are independent of . Then begin-
ning with eny unbiased algorithm for estimating phasors,
an asymptotically unbiased algorithm (through the sec-
ond order variations in ¢;) for estimating 4 is obtained
by simply averaging the phasors and then computing the
arctan of the resulting ratio.

Estimator Variance

Assuming there is no bias in the estimate, the variance of
the estimate is an important consideration for astromet-
ric performance because it dictates how much integration
time is required to achieve a certain level of precision in
the average phase estimate.

To compute the variance of the least squares or mini-
mum variance estimate we perform calculations similar
to those in (19-20). Let ¢ denote the true phase and let
q3 be the estimate. Then,

- Dzz cos? (d)) + Dyy sin’ (¢) — Dzy Sin(2¢)
2v? '

E(l¢ - 1)
(24)

Here pq, Pyy; Pzy form the covariance matrix of the pha-
sor variables from any linear estimator for (6). (In par-

ticular these expression apply to both the optimal and
least squares estimates.)

The variance for the ABCD algorithm is given as

In the figure below analytical comparisons are made be-
tween these algorithms with respect to rms phase error
due to shot noise (240 photons per observation). The
wavelength and PZT stroke length are both 725nm.
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Fig. 3 RMS error of estimators

It is seen that the “optimal” algorithms perform better
than the least squares or ABCD algorithms.

Simulation results

The results of a number of simulations with the ABCD
and optimal 4-bin and 8-bin algorithms are tabularized
below. The simulations are developed in an integrating
bucket fashion [3] with a stroke length of 900nm. The
bias and variance of each of the algorithms is investi-
gated with respect to varying wavelength of the light.
Wavelengths of 550nm, 625nm, 725nm, and 900nm are

E ([q3—¢]2) = / / [arctan <yf—f—-y—> —¢*px (z)py (y)drdy,used. The photon counts are generated by sub-sampling
y—z

(25)
where the factor v that accommodates the mismatch is

given in (11). Now let f(z,y) = arctan(y(z+y)/(y—x)).
Then using the identity

o= (£21)
y—

(26)

where Z = E(X) and § = E(Y), we approximate the
integrand in (24) by a Taylor series expansion of f about
(Z,¥) and retain terms containing the second moment to
obtain the approximate variance expression:

sis-om =[]+ [Z . e

the OPD dithering steps to calculate the integral which
determines the expected value of the number of photons
for each bin. Shot noise and read noise are then indepen-
dently added. The shot noise is governed by a Poisson
distribution with a mean of 240 photons, and the read
noise is zero mean Gaussian with a one sigma value of
6 photons. A visibility of one is used. The statistics for
each of the results is calculated by computing the mean
and standard deviation of 1000 simulations, with each
simulation consisting of 1000 phase estimates represent-
ing the number of phase estimates the interferometer will
produce in one second.

The results indicate that the optimal algorithms perform
significantly better than the ABCD or phasor averaging
methods when there is a larger mismatch between the op-
erating wavelength of the light and the stroke length. In



fact a factor of greater than 5 improvement in standard
deviation is seen at the shortest wavelength. When the
wavelength and stroke length are matched the optimal 8
bin algorithm performs slightly worse than all the algo-
rithms because of the additional read noise introduced
by the extra four bin measurements it makes to generate
an estimate,

Global paramaters:

nsim = 1000; % number of Monts Carlo runs

npoi = 1000; % length of individual data run {ms)

10 = §; % resd noise

iphotons =240; % total number of ph n

wavelen=900; % wavelength plezo mavement was optimized for (nm}
NEWL = 3 % visibility

phase_delay = 0.01*pl; % phess delay {radians)
oftwave=900; % sctuat uavdcn gth

bias sstimator
average )
optimai 4-bin
imal

WisWL = 1, sibility
phage_delay = 0.01'pi; %nhnudtlly {radians}
offwavez725; % actusl w g

visWL = 1, % visibility

phase_deiay = 0.01°pi; % phass delxy {(radians}

offwave=550; % actual wavelangth dats was taken at {nm
Em:r

-—lIEF_E

- 1311 -ﬁ—
_

4. Errors due to change in OPD.

The previous section focused on statistical properties
of various estimators, given that the phase that is be-
ing estimated is constant over the period of integra-
tion. Because the SIM requirements on the estimation
of the pathlength are subnanometer, it is not accurate
to make this assumption. Factors that contribute to
a non-constant phase include instrument motion (both
rigid body and vibrational motions), errors introduced
by the dither signal, and errors introduced by the con-
trol system while trying to reduce the phase errors.

To begin we make a slight modification of the model (2),
explicitly using a bucket integrating method where pho-
tons are collected contemporaneously during the dither
of the modulating element. And we also allow ¢ to be
time-varying during the integration period. The result-
ing intensity model is

ui+§
L=
u,‘—e

where u = kx, u; is the central value for each bucket, and
the buckets have equal widths A. If ¢ is constant, the
model becomes after integrating (6)

Ip{1 4+ Vcos(u + ¢(u)) }du,  (28)

I, = Li{A+2V sin(%—) cos(u; + @) }. (29)

Using the variables I, Iof/cos(qb), LV sin(¢) where V =
2sin(A/2)V, the system of equations above can be writ-
ten as

A

I cos(u;) —sin(ug) I
=l : LoV cos(g)
In A cos(uy) —sin(uy) LoV sin(¢)

(30)

just as in (6). For notational purposes we write this
system as
I =

Az. (31)

When ¢ is not constant, let ¢ denote its mean value and
define the variation 8¢ by ¢ = ¢ + §¢. Note that

N
ui—%

In the analysis to follow we assume that terms of O(|6¢4?|)
and higher can be ignored. Thus we have

u = 0. (32)

L = f“‘* 2 Ip{1+ V cos(u+ ¢ + 6¢(w)) }du
= IO{A +2Vsin(£) cos(uz +4)}
~IpV cos(e) fu‘jg sin(u)ép(u)du
—IV sin(¢) j:j_%’ cos(u)bp(u)du}

(33)

Next introduce the matrix B, with entries B;; = 0 if j=1,

1 uH-A .
i = Zen(3 ) - sm(u)6¢(u)du (34)
if j=2 and
1 ui+%
Bj = ———— 6 d
= s /. o (@
if j=3.
Then (34) has the form
I = Az - Bx. (36)
Now suppose an estimate & of z is generated via
= (ATQ1A)tATQ I (37)

Then since



= (ATQ™'A)"1ATQ (I + Bx), (38)
the error e = z — 7 is simply
e=(ATQ'A)"1ATQ 'Bu. (39)
And because the phase is given by
¢(z) = tan™" (z3/2), (40)
the phase error to first order is
¢(z) - ¢(2) = ¢(z)(z—2)
= ¢e
= (41)

2

~z z
72 F Fares
—sin(?)eg + cos(<b_)e3
gV v

Equation (41) gives the general form of the phase error.
To obtain a more useful characterization it is necessary to
evaluate the error vector e given in (39). Two simplifying
assumptions are made to facilitate this analysis. These
are: (1) @ is a scalar matrix (a multiple of the identity),
and (2) the wavelength and dither stroke are matched.
Under these assumptions an exact formula for the error
can be derived when ¢ is a step function with values §¢;
for u € [u; — A/2,u; + A/2]. Specifically, we find that

IOV [cos(qS) Z 5 sin(2u;)+sin(@) Z 8¢; cos(2uy)],
(42)

and

Z 8¢p; cos(2u;)—sin(¢p) Z 8¢ sin(2u;)],
(43)

oV
eg = ——|[cos(¢

N

where NV is the number of dither steps. The resulting

error in the phase estimate is

—#(2) = %J-[(.:os 2¢) 3_ 8¢; cos(2u;)]

beb; sin(2u;)]. (44)

Assuming ¢ < w/8 (which is a reasonable assumption
while fringe tracking is taking place), the error is maxi-
mized when

1660

where

8¢; = |6¢]oc cos(2u;), = max |§¢;],

(45)

with resulting error |§¢|/2.

If instead the §¢; are treated as identically distributed
independent random variables with zero mean and vari-

ance 72, we have
, 1 - -
Hz) = p(F) = N[COS(Q(f)CQ — sin(264)S,]64,  (46)
where
Ca = [cos(2uy), cos(2uy), . . ., cos(2uy), (47)
and
Sy = [sin(2uq), .. ., sin(2un)]. (48)
Thus,
B( 6() = 9@ [ = £ztr{C:CT + 58} 49

N2

Note that when we assume that §¢; is random, increas-
ing the number of dither steps leads to a linear decrease’
in the rms error. But this is not the case in general, as
seen in (45). These results hold regardless of the mecha-
nism that produces the phase change over the integration
period; and thus can also be interpreted as error in the
dither position. From this perspective our results con-
from with those obtained in [7].

Equation (44) also has the following approximate contin-
uous analogue when §¢ is not a step function:

d(x) - p(%) m{ sin(2¢) fo sin(2u)8d(u)du)
+ cos(24) fo cos(2u)dp(u)du}.

(50)

Thus it is seen that the error introduced by the noncon-
stant phase term is completely characterized by its 2nd
Fourier component.

Another useful error characterization can be developed
if we suppose that over each integration period the de-
viation, 6¢, from the mean phase is approximated by a
quadratic. Without loss of generality we will assume that
u € [-m, 7] in the analysis. Then

= 66(0) + 66/ (O)u + %5(}5"(0)1/,2.

6p(u) (51)

It can be shown that for functions of quadratic type the
approximation (44) is quite accurate. A straightforward
integration gives the error as

20 _sin(2)se/ (o).

(52)

Hz)—9(@) ~ g loos(26)



Two examples of expected phase motion produced by
the instrument that illustrate the results of this section
are now considered. The first involves OPD variations
induced by the rigid body motion of the spacecraft, and
the second involves the phase variations produced by the
control delay line PZT motion while compensating for
pathlength error.

A simulation was first developed to determine the effect
of undetected rigid body motion of the SIM spacecraft
on the fringe measurement process. The motion of the
spacecraft is assumed to be of very low frequency com-
pared to the 1kHz measurements of the delay line fringes.
Therefore the change in phase during a 1ms tirne inter-
val is approximated by a ramp function. Using nominal
SIM attitude control system values of 2arcsec pointing
stability with a .1Hz controller bandwidth, the maximum
OPD variation during a millisec interval can be as large
as 10nm. The simulations used for these plots contained
no noise, and the ABCD algorithm with matched stroke
and wavelength of 725nm was employed. The form of the
controller assumed in these simulations also contributes
in an important way to the observed error. In these sim-
ulations the PZT is moved instantaneously to the com-
manded compensating position. (Some comments on this
form of the controller using a zero order hold assumption
will be made after discussing the results of the rigid body
simulations.)

400’— r =

— Mean phase delay = 18,125 nm
~-_Mean phase delay = 3.625 nm
asot
3001 ﬁ

phase enor {pm)
- o Y '~
8 g 8 g
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<
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Total rigid body displacerment (nm)

Fig. 4 Systematic phase estimation error due to space-
craft motion

The abcissa in the plot can be interpreted as the OPD
velocity: The 10nm value can be related as a .1Hz band-
width ACS controller, while a Inm value corresponds to
a .01Hz bandwidth controller. Note that the error in
phase measurement is dependent on how well phased the
two arms of the inteferometer are to begin with. The two
separate plots show two different starting phases. If the
starting phase is Onm, there is no error in the measure-
ment, but we cannot rely on this being the case. The
larger the initial phase, the more error the rigid body
motion produces. For each of the two initial (or mean)
phases, several data points were collected for different
overall motions of the spacecraft. The plots show that
the phase error is linear with the overall motion. These
results conform very well to the prediction made in (51).

Because the acceleration term is zero for the ramp func-
tion, (51) states that the error should be proportional to
the product of the phase velocity and the initial phase
error; exactly what is observed in the simulations.

These results indicate that both the rigid body motion of
the spacecraft should be minimized as well as the initial
phase offset between the two arms of the interferometer
to avoid systematic errors in the phase measurements.
However, low frequency error such as this can also be
mitigated by modifying the implementation of the con-
troller. This involves running a higher bandwidth inner—
loop that moves the delay line PZT to track the OPD
rate. For example, a 5Khz inner-loop run in this man-
ner should reduce the error in the plots by nearly a factor
of 5.

The next set of plots illustrate another source of phase
measurement error. As in the previous set, we assume
the spacecraft rotates, causing a 10nm change in OPD
over lms. The interferometer measures the change in
OPD and the delay line control system applies a cor-
rection once per per millisec to compensate for it. The
finite response time of the actuator due to electronics will
have an effect on the estimated phase. This response is
modeled in the following plots via a damping coefficient
a:

u(t) = uo(1 — exp(—at)), (53)

where up is the desired correction. Figure xx shows the
changing phase due to a 10nm correction being applied
to the delay line at the beginning of the lms interval.
Three different profiles, each with a different damping
coefficient, are shown.

10 r

sf?

8

~
-
-
.

> )
v e =g
n

dotta phase {m} 10577

[

° 01 0z 03 04 05 06 07 08 09 1
time (ms)

Fig. 5 Phase profiles due to different response models

Several different damping coefficients were used to gen-
erate the plots in Figure 6.

In each case the mean phase delay was 18.125nm and the
total correction applied was 10nm. The examples show
problems specific to SIM and therefore have typical pa-
rameters that we expect to encounter. The total number
of photons collected in each lms interval is 240. The



read noise in each bin is equivalent to 9 photons. The
visibility was taken as unity, and the wavelength of the
light used is 725nm. An average of 10° measurements are
used to determine the errors shown. For large damping
coefficients (corresponding to fast electronics), the error
e to finite response times is minimal, less than 10pm.
However, the errors increase as the electronics get slower.
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Fig. 6 Error in estimated phase due to actuator response
5. Concluding Remarks

The Space Interferometry Mission poses interesting chal-
lenges in phase estimation due to the required precision
and low light levels at which the instrument operates. In
this paper we showed that conventional phase estimation
techniques do not in general meet SIM’s requirements
due to small inherent bias in each of these methods at
low signal signal levels A general technique for reducing
the bias was developed, and the efficacy of this modifi-
cation was validated in simulations. Comparisons of the
ABCD, least squares and minimum variance based phase
estimation algorithms were conducted using the antici-
pated operating parameters of the instrument. The rel-
ative performance of these estimators was shown to be a
function of wavelength; but the 8 bin minimum variance
based algorithm was shown to be generally superior to
the others. We also analyzed and simulated the effect of
non-constant pathlength difference on phase estimation.
This was done in the context of pathlength difference
variations due to spacecraft motion and in the motion of
the PZT element used to control the pathlength. Each of
these effects was shown to impact the phase estimation
problem, but in predictable ways that can be compen-
sated.

The analysis and simulations presented were restricted
to quasi~monochromatic light. Current and future work
focuses on extending the work to multiple spectral bins of
finite bandwidth. In addition, the simulations are being
extended to include the closed loop delay line controller.
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